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Plan

● Introduction
● Sample Spring Code 

● EJB with Spring – Java + annotations 
● Spring XML Core Syntax
● Setup with maven dependency, run main + Junit

● Spring Inversion of Control
● Sample ANTI-Patterns vs Spring solution
● Spring = NEW Architecture principles

● Mock Test injection



  

Introduction

● Springframework is a java framework …
● Developped by Rod Johnson

& Juergen Hoeller

● Version 1.0 in ~ 2002
● Widely used since v2.5  (now 3.1)
● Some alternatives: guice, plexus, EJB3, …

● World-wide Standard DE FACTO in J2EE



  

Game of the Name 

● Spring + Framework …
● Framework = “Cadre de Travail”

● = Way of working, proposed / imposed by library

● Spring = “ressort”, “printemps”, “renouveau”
● After the cold winter of ugly EJB specs 1.0, 2.0, …

● aims to RE-invent the way of thinking devs
● tries to replace proprietary J2EE vendor 

implementations (weblogic, websphere, jonas, 
glassfish, …) and EJBs...



  

Before Spring existed...

● Code design history
● Design Patttern (Gof), Model Driven Architecture

● Code was full of ANTI-Pattern:
● Singleton   (THE anti pattern)
● EJB 1.0 specs  (JNDI servicelocator + factory + …)
● Spaghetti code

● NO Inversion of Control (IOC)
● NO Container
● NO Junit tests



  

EJB 1.0 spec … = 1 line of real code
/ ~10 lines of technical noise



  

EJB With Spring …

Small is beautiful : only annotated POJOs



  

Spring XML Declaration 
for Annotations 

@Component / @Service
and @Injected / @Resource



  

Import Spring … 
(easy with Eclipse + Maven + M2e) 

1)

2)

3)



  

The (main) Proof in the pudding...



  

The Junit Test proof also ...



  

Spring XML Core Essentials
● Before annotations … only POJOs & Xml



  

SpringFramework documentation

● Spring documentation is extremely rich
● 700 pages of nice PDFs
● Causing a Problem ?

● Google search has billion solutions (and pbs of others...)

● Spring =
● A Container
● XML syntax
● Xml helper classes
● Java helper classes  (JdbcTemplate, JMS, all J2EE libs...)



  

Spring Revolution 
= Think code differently

● Spring is not a N+1 java library

● not only a Xml factory 
● Ok for runtime vs compile time dependencies… 
● Ok to externalize technical code outside of java
● (never import org.springframework.*;  in code)
● … but the Xml can become worse

● Spring Dependency Injection

  = Inversion Of Control Inversion Of Control 

  = Hollywood principle: “don't call us, we call you”



  

ANTI-patterns explained
… Things beginners do, things that you should 

NEVER do anymore

Solutions with Spring
Things you can read on smart projects

adopt the “Monkey see – Monkey do” attitude



  

The EVIL Singleton ANTI-Pattern

● In the GoF book,  
Singleton is one of the 23 patterns …

● Problems
● Singleton contains technical code for initialization
● Type implementation is hard-coded
● Object is used by many others, dependency is hidden
● Lazy init + Untestable … only at run-time



  

Singleton vs IOC

● Without IOC

● With Container + Dependency Injection

B  (singleton) 1
A

Public void callA() {
   B.getInstance().callB();
}

A
@Resource protected B b;
public void callA() {
   b.callB();
}

B



  

Container = Bootstrap + init all soon
● The container is equivalent to bootstrap code:

● Pros
● No more difficult Egg-and-Chicken problem... 
● NO lazy init problem found at runtime
● All object can be tested by mocks (see next)



  

Static Fields (constants) ANTI-
Patterns

● Bad …

● OK   use SpringPropertyPlaceholder
● Externalize values in placeholder “${key}” 
● Values comes from “key=value”  properties file
● Choose which file to inject in PropertyPlaceHolder



  

PropertyPlaceHolder

● Xml declaration

● Use values in Xml beans

● Use values in Java code



  

explicit create class instance 
(hard-code class + wrapper)

● BAD : instanciating objects may be tedious
● contains technical boiler-plate code!

● OK: use Spring facilities, like AOP, annotations..



  

Use Interface instead of Classes
… but not too much (no EJB stutter)

● Use interface when appropriate, example: 
use javax.sql.DataSource 
… not com.oracle.jdbc.OracleDatasource

● define a summary interface for contract between 
client-server objects

● For server-server code (example DAO)
... not need for interface
spring use CGLIG / AopAlliance   (with restrictions)



  

Common Architecture Layers

● 3-Tiers Architecture principles:
● Tiers 1 = Exported Protocol Services

● Example for Web: (Web tiers = tomcat...)
– Servlet, Jsp, Rest, WebService (jaxws)...

● RMI, JMS, Corba, Hessian, t3 (weblogic: ),  …

● Tier 2 = Service Layer (business code)
● Contains “EJB” + DAO + helper
● Access to jdbc from JTA + Orm (eclipselink, hibernate...)

● Tier 3 = DataBase layer



  

3-Tiers with Spring

● Tiers 1 = expose explicitely connectors in XML
● Ex 1 webservice:
● Ex 2 JMX: 

● Tiers 2 = only @Component in java POJO

● Tiers 3 = Hibernate + JTA fully supported by 
spring...



  

Spring is modular : 
write once – run many

● code is NOT dependent of Spring
● code is NOT dependent of anything technical

● Can choose at deployment time which protocol...

● Strength of Spring : the same code can run 
● in weblogic (production mode)
● In Eclipse (standalone mode with DB)
● In Junit integration Test with DB
● In real Unit-test with Mocks (no DB)



  

Program Aspect Splits
Java – Xml - Properties

Xml Architecture Setup
( = plombing)   
Protocol exported + internals

Externalized Properties file
= environment specific  
(prod/int/dev..)

${key}

addOrder() {
  SendEmail();
  Save();
}

reportPdf() {
  find();
  exportPdf();
}

Functionnal code

Stateless
Service Objects
In container



  

Mock Testing

● Example of Mock framework libraries : 
EasyMock,  Mockito

● Goals : test a POJO 
… but replace all its (spring) dependencies
by dummy mock objects

● Mock are implemented at runtime from interface 
+ dynamic Proxy

● They record + replay + check method calls



  

Sample Mock Test
● Annotations:

● @Mock to instanciate mock proxy on interfaces
● @InjectMock to inject dependency into object



  

Expect-Run-Verify Mock Test

Real object MyEJBImpl is not called 
(no System.out.println() )



  

Questions ? 

Alors Tps !
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