

Cours IUT CSID – Janvier 2012
Introduction to SpringFramework

Inversion Of Control (Dependency Injection)
& Mock Testing

Arnaud Nauwynck

This document:
http://arnaud.nauwynck.chez-

alice.fr/devPerso/Pres/Intro-SpringIOC.pdf

Plan

● Introduction
● Sample Spring Code

● EJB with Spring – Java + annotations
● Spring XML Core Syntax
● Setup with maven dependency, run main + Junit

● Spring Inversion of Control
● Sample ANTI-Patterns vs Spring solution
● Spring = NEW Architecture principles

● Mock Test injection

Introduction

● Springframework is a java framework …
● Developped by Rod Johnson

& Juergen Hoeller

● Version 1.0 in ~ 2002
● Widely used since v2.5 (now 3.1)
● Some alternatives: guice, plexus, EJB3, …

● World-wide Standard DE FACTO in J2EE

Game of the Name

● Spring + Framework …
● Framework = “Cadre de Travail”

● = Way of working, proposed / imposed by library

● Spring = “ressort”, “printemps”, “renouveau”
● After the cold winter of ugly EJB specs 1.0, 2.0, …

● aims to RE-invent the way of thinking devs
● tries to replace proprietary J2EE vendor

implementations (weblogic, websphere, jonas,
glassfish, …) and EJBs...

Before Spring existed...

● Code design history
● Design Patttern (Gof), Model Driven Architecture

● Code was full of ANTI-Pattern:
● Singleton (THE anti pattern)
● EJB 1.0 specs (JNDI servicelocator + factory + …)
● Spaghetti code

● NO Inversion of Control (IOC)
● NO Container
● NO Junit tests

EJB 1.0 spec … = 1 line of real code
/ ~10 lines of technical noise

EJB With Spring …

Small is beautiful : only annotated POJOs

Spring XML Declaration
for Annotations

@Component / @Service
and @Injected / @Resource

Import Spring …
(easy with Eclipse + Maven + M2e)

1)

2)

3)

The (main) Proof in the pudding...

The Junit Test proof also ...

Spring XML Core Essentials
● Before annotations … only POJOs & Xml

SpringFramework documentation

● Spring documentation is extremely rich
● 700 pages of nice PDFs
● Causing a Problem ?

● Google search has billion solutions (and pbs of others...)

● Spring =
● A Container
● XML syntax
● Xml helper classes
● Java helper classes (JdbcTemplate, JMS, all J2EE libs...)

Spring Revolution
= Think code differently

● Spring is not a N+1 java library

● not only a Xml factory
● Ok for runtime vs compile time dependencies…
● Ok to externalize technical code outside of java
● (never import org.springframework.*; in code)
● … but the Xml can become worse

● Spring Dependency Injection

 = Inversion Of Control Inversion Of Control

 = Hollywood principle: “don't call us, we call you”

ANTI-patterns explained
… Things beginners do, things that you should

NEVER do anymore

Solutions with Spring
Things you can read on smart projects

adopt the “Monkey see – Monkey do” attitude

The EVIL Singleton ANTI-Pattern

● In the GoF book,
Singleton is one of the 23 patterns …

● Problems
● Singleton contains technical code for initialization
● Type implementation is hard-coded
● Object is used by many others, dependency is hidden
● Lazy init + Untestable … only at run-time

Singleton vs IOC

● Without IOC

● With Container + Dependency Injection

B (singleton) 1
A

Public void callA() {
 B.getInstance().callB();
}

A
@Resource protected B b;
public void callA() {
 b.callB();
}

B

Container = Bootstrap + init all soon
● The container is equivalent to bootstrap code:

● Pros
● No more difficult Egg-and-Chicken problem...
● NO lazy init problem found at runtime
● All object can be tested by mocks (see next)

Static Fields (constants) ANTI-
Patterns

● Bad …

● OK use SpringPropertyPlaceholder
● Externalize values in placeholder “${key}”
● Values comes from “key=value” properties file
● Choose which file to inject in PropertyPlaceHolder

PropertyPlaceHolder

● Xml declaration

● Use values in Xml beans

● Use values in Java code

explicit create class instance
(hard-code class + wrapper)

● BAD : instanciating objects may be tedious
● contains technical boiler-plate code!

● OK: use Spring facilities, like AOP, annotations..

Use Interface instead of Classes
… but not too much (no EJB stutter)

● Use interface when appropriate, example:
use javax.sql.DataSource
… not com.oracle.jdbc.OracleDatasource

● define a summary interface for contract between
client-server objects

● For server-server code (example DAO)
... not need for interface
spring use CGLIG / AopAlliance (with restrictions)

Common Architecture Layers

● 3-Tiers Architecture principles:
● Tiers 1 = Exported Protocol Services

● Example for Web: (Web tiers = tomcat...)
– Servlet, Jsp, Rest, WebService (jaxws)...

● RMI, JMS, Corba, Hessian, t3 (weblogic:), …

● Tier 2 = Service Layer (business code)
● Contains “EJB” + DAO + helper
● Access to jdbc from JTA + Orm (eclipselink, hibernate...)

● Tier 3 = DataBase layer

3-Tiers with Spring

● Tiers 1 = expose explicitely connectors in XML
● Ex 1 webservice:
● Ex 2 JMX:

● Tiers 2 = only @Component in java POJO

● Tiers 3 = Hibernate + JTA fully supported by
spring...

Spring is modular :
write once – run many

● code is NOT dependent of Spring
● code is NOT dependent of anything technical

● Can choose at deployment time which protocol...

● Strength of Spring : the same code can run
● in weblogic (production mode)
● In Eclipse (standalone mode with DB)
● In Junit integration Test with DB
● In real Unit-test with Mocks (no DB)

Program Aspect Splits
Java – Xml - Properties

Xml Architecture Setup
(= plombing)
Protocol exported + internals

Externalized Properties file
= environment specific
(prod/int/dev..)

${key}

addOrder() {
 SendEmail();
 Save();
}

reportPdf() {
 find();
 exportPdf();
}

Functionnal code

Stateless
Service Objects
In container

Mock Testing

● Example of Mock framework libraries :
EasyMock, Mockito

● Goals : test a POJO
… but replace all its (spring) dependencies
by dummy mock objects

● Mock are implemented at runtime from interface
+ dynamic Proxy

● They record + replay + check method calls

Sample Mock Test
● Annotations:

● @Mock to instanciate mock proxy on interfaces
● @InjectMock to inject dependency into object

Expect-Run-Verify Mock Test

Real object MyEJBImpl is not called
(no System.out.println())

Questions ?

Alors Tps !

This document :
http://arnaud.nauwynck.chez-

alice.fr/devPerso/Pres/Intro-SpringIOC.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

