

IUT Paris8– January 2012

Understanding JPA
Session & Transaction

Proxy, Cache, Lazy Loading, Detached / DTO

Arnaud Nauwynck

This document:
http://arnaud.nauwynck.chez-alice.fr/CoursIUT/JPA-SessionXA.pdf

http://arnaud.nauwynck.chez-alice.fr/CoursIUT/JPA-SessionXA.pdf

Table Of Content

● Low Level
● JDBC
● JTA Transaction Manager, XAResource

●

JDBC

● Standard, Stable and very well implemented
● API is vendor independent (but not SQL)

Driver

DataSource

XADataSource

Connection

XAConnection

Statement ResultSet

PreparedStatement

CallableStatement

XAResource

Jdbc … integrated with JTA

Transaction

TransactionManager

XAResource

Thread

ThreadLocal
=getCurrentXA()

0..1

ConnXAResourceAdapter

Connection

XA Multi-databases
… each DB is a XAResource
Db xa = slave xa of master JTA
2 Phases -Commit

Sample JDBC PreparedStatement

Rule of Thumb:
you open it => you close it !

Close conn=>close pstmt => close rs

!

Same With JPA

field=column

SQL Low Level CRUD

● CRUD = Create-Read-Update-Delete

● Create INSERT Emp (id,name)
 VALUES(?,?)

● Read SELECT e.*
 FROM emp e
 WHERE e.id = ?

● Update UPDATE Emp e
 SET e.salary = ?
 WHERE e.ID = ?

● Delete DELETE Emp e
 WHERE e.id = ?

… DON'T forget
COMMIT

Set autocommit false
!

CRUD with JPA

● Create

● Read
● By Id

● Update

● Delete

That's All … That works

● The API is simple

● BUT you need to understand underneath...
● General concepts / Behaviors

● Transaction – XAResource - Session – Attached/Detached
Entity – LazyLoading – DeferredUpdate - Lock …

● And also Vendor Specific...
● Cache Optimizations, Cache sync, Proxy, ReadOnly
● SQL Joins, Batch Read, etc...

Rule 1 : Query Multiple Times the
Same Attached Entity …

Looking in the JPA Find (cRud)
Service
(Thread)

@Transaction(REQUIRED)
Check current Session exists? … no
=> begin Session

Session Connection

Returned to POOL
Session.commit()
(= dispose)

Check session registered in XA ?
no? => create + register
Yes? => re-use Find in cache?

Yes=> return
No=> do SELECT

FindById() ==> attached

RE-FindById() ==> same ref

Zooming Session … => Transaction
Service
(Thread)

@Transaction(REQUIRED)
Check current Tx exists? … no
=> begin XA

On return
=> xa.prepare()

=> xa.commit()

Transaction

(STATUS_COMMITTED)
STATUS_NO_TRANSACTION

Session Connection

Returned to POOL

Session.flush()

Session.commit()
(= dispose)

Check session registered in XA ?
no? => create + register
Yes? => re-use Find in cache?

Yes=> return
No=> do SELECT

FindById() ==> attached

Session = Glue between
Transaction (XAResource) and

Database (Connection)
+ hold Attached Entities

Transaction

Session

TransactionManager

SessionXAResource Connection

XAResource

UnitOfWork
=map-map attached entities

Pseudo-Code for
Transaction-XAResource enlist

Pseudo-code for
Transaction get or register Session

Generalisation to understand...
1 Transaction – N Sessions (N DBs)

Transaction

Session1

TransactionManager

Connection1 DB1XAResource1

Session2 Connection2 DB2XAResource2

Sample Transaction:
PAY to DB1 --- RECEIVE in DB2

Pseudo-code for “em.findById()”

Find By ID
Attached Entity (=UnitOfWork / Level1)

+ Cache Level 2

Transaction

TransactionManager

Session

All consecutive findById() with same id return same object ref (==)

FindById() … step 1

(2) Find in Shared Cache (3) Find in database

(4) put in cache

(5) clone + register in session
attached entity = Work copy
In Unit of Work)

Level 2 Cache

Session = RW - Single Threaded
Level 2 Cache = RO Shared

Session
= Unit Of Work
= Map Entity by Ids
= R-W
= Level 1
… Owned by Single Thread

Session

Exchange objects
only by cloning copy !

Shared Cache
= Level 2 Cache
= Partial Mirror of DB
= Read-Only objects
… Shared by All threads

INS/UPD/DEL

SELECT

Find
clone !

put-on-
commit
clone

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

