

Cours / TP IUT 2012

Introduction to Java.lang*, Java.util.* , Java.io.*

arnaud.nauwynck@gmail.com

Outline

● Java.lang.*
● Object, Class, String

● Java.util.*
● List (ArrayList), Object equals()
● Hash algorithm, HashMap/Set, hashCode()
● R-B Tree algoritm, TreeMap/Set, compareTo()

● Java.io.*
● Output/Input Stream
● PrintStream / StreamReader
● DataOutput / Input, Object Input/Output Stream

MAY – SHOULD - MUST KNOW

● A java developer MUST KNOW BY HEART
90% of java.lang/util/io.* package...

● Java.lang.String and java.util.ArrayList
 = the 2 most widely used classes

● Anyway a “person” who doesn't know this is
NOT CONSIDERED a Java Developper

● eliminatory questions in jobs recruitement

java.lang.Object

● All Objects are extending “java.lang.Object”
● An Object has 1 (immutable) Class (=Type)
● Java.lang.String are immutable

Java.lang.Object

String

JDK classes :
 java.*, javax.*, com.sun.*

Java.lang.Class

User-Defined classes
fr.*, org.*, com.*

1

Class, ClassLoader, Method/Field
Introspection

● Class is both
● INTERNAL for type-checking

ensure integrity and security of the JVM
● PUBLIC for introspection / reflection

● Classes are loaded per ClassLoader
● A Class is loaded at most 1 per classLoader
● Possibility to have several isolated ClassLoaders
● => osgi / plugins / application servers architectures

● More in Introspection presentation

Java.lang.String

● String are immutable
● Concatenate '+', Replace … => new String
● Dot not compare with “==” … use “.equals()” !!!!

StringBuilder

● Use StringBuilder for writable/temporary buffer
● Basically, a wrapper for “char[]”
● Edit, delete, chars...

● Performance:
● … usefull for list iteration + concatenation
● Javac compiler already generate StringBuilder code

 => … useless for static “a” + “b” + 12 + …
● StringBuffer is deprecated (synchronized)

StringBuilder

Java.util. Interfaces/Classes

● Java.util.* package contains both
● Interface

example: List
● Simple implementations

example ArrayList, LinkedList
● Wrappers

– Example: Collections.unmodifiableList(),
Arrays.asList(), Collections.synchronizedList()

● See also
● apache commons-collections, google guavac ...

Interfaces:
Iterable,Collection,List,Set,Map

● Iterable<E> { public Iterator<T> iterator(); }

● Collection<E>
● a mathematical bag, with no special order or property
● add()/remove()/contains() for elements

also clear()/addAll()/removeAll()/retainAll() …
size()/isEmpty()/toArray()

● List<E> collection + index supports

● Set<E> collection + unicity

● Map<Key,E> unicity by key … =Set<Entry<K,V>>

● SortedSet, SortedMap

Interfaces

Iterable

Collection

List Set Map

SortedMapSortedSet
Note there is no SortedList in jdk !!!
=> cf google gavac for efficient ones

Java.util.ArrayList
Abstract classes and Interfaces

Sample ArrayList Code

Object Identity : equals()

● List / Collection only needs “equals()”
for remove(),contains()...

● Equals is not “==”
● Compare equality by VALUE

.. not only by POINTER
● Equals must be reflexive, symmetric, transitive...
● == By default when not overridden (NOT RECOMMEDED)

● Equals may choose a subset of fields to compare
● Example : “id” only

Sample Equals

Typical List.remove() / indexOf()
scan algorithms in o(N)

Special case for
“null.equals(elt)”
Return on first null

Linear iter
test equals() with elts
Return on first found

Theory => TP

1) Create a new java project in eclipse

2) Create a class with 4 id fields (an int, a double,
a String and a bool), and other dummy fields

3) Implements the correct equals(), hashCode(),
compareTo() for this class

4) Write a Junit test for playing with list
add(),remove(),contains(), addAll()...

HASH table algorithms

● Doing search in O(N) is very inefficient
● Hash-Table offer an O(1) algorithm

with memory consuption P
● Choose P as prime number
● with P >> N for avoiding conflicts

● to search an elt, compute its hash
=> search first in entry index “hash modulo P”
check candidate with equals(),
otherwise (conflict), check in next entry

Object.hashCode()

● HashCode() compute a HASH for an Object
● When Object are equals =then=> hashCode equals
● Reciprocity is false

● when not overriden (NOT RECOMMENDED),
default hashCode() is the memory adress of the
object …
● The first time it was requested and stored !!!

(gc can move objects)
● Modulo 32bits for 64bits pointers

Sample hashCode()

Note on Hash Keys Immutability

● HashMap should contains readonly Keys!!
class MyKey { private final String key1; …. }
.. in doubt, do not modify objects after enlisted in
maps!!!

Sample HashMap Code
HashTable is deprecated (synchronized), use HashMap

HashSet

● Same as HashMap … key is also the value
● See internal implementation in jdk:

Sample HashSet Code

Red-Black Tree Algorithm

● well distributed Tree :
 N elements => depth log(N)

● On each node
● A node contains a value … to compare with others
● A node has 2 child left - right
● All elements in left Tree are compared <= node
● All elements in left Tree are compared > node

● Performance:
● Operations in O(Log(N)) : add(), remove(), contains()...
● Tree is ordered => Scan in sorted order... unlike hash

Sample compareTo() method

Sample TreeMap code

● Same sample as HashMap …
only change new HashMap() by new TreeMap()

● Specific samples for sorted key collections

Sample TreeSet

● Same sample as HashSet …
● Specific code for sorting collections

Theory => TP

1) Recursive Scan in a directory file

2) Filter out meaningless (hidden) files and sub-
dirs starting with “.” name (.svn/*, .git, ...)

3) Count the number of files having the same
name:
Maintain a “Map<String,List<File>>”
occurences.
At the end, print the list of duplicates (count > 1)
files names, with the list of corresponding
occurences

Input/Output Stream Classes
● Stream is a way to handle bytes, one after one

● Input => for reading byte(s)
● Output => for writing byte(s)

Java.io. Input/Output Stream

● Stream are abstract classes .. see sub-classes
● FileInputStream (resp Ouput)

= based on an underlying java.io.File
● BufferedInputStream (resp Ouput)

= based on another Stream, plus a buffer
● ByteArrayInputStream (resp Output)

= based on an in-memory array
● SocketInputStream (resp Ouput)

= based on a Socket
● StringBufferInputStream … deprecated!!

Sample ByteArrayInputStream

Typical code with try-finally close
and IOException

Sample Code: InputStream =>
SHA1 digest (as in git hash-object)

Sample Copy Input->Output Code

Same with Jakarta commons-io !!

Theory => TP

● Similar to previous exercise:

Implements the search duplicate file by content
instead of duplicate by filename
● Use MessageDigest to compute SHA1 hashcode
● Maintain a Map<SHA1,List<File>>
● Print duplicates file contents

Reader/Writer abstract classes
● Reader/Writer is a way to handle chars (not bytes), one after one

● Reader => for reading char(s)
● Writer => for writing char(s)

CharSet encoding/decoding

● Byte to char conversion is called CharSet
Encoding/Decoding

● Char can be 1,2,3 or 4 bytes long in UTF-8
● standards ASCI chars are 1 byte ONLY !!

(0 followed by 7 bits)
● Other standard Encoding: ISO-8859-1=Latin1,

Cp1253=Windows

UTF-8 / ISO-8859-1 nightmare
… English Javadoc

EXACTELY SAME file, viewed as ISO-8859-1 file

file(s), viewed as UTF-8 file

Line written in ISO-8859-1

Line written in UTF-8

InputStreamReader Sample Code

● understand class behavior
by reading camel-case classname from right to left ...

Input Stream Reader =
 a Reader sub-class adapter
 based on InputStream

Sample BufferedReader Code

● Perfect class for reading line per line

PrintStream class

● Extension of OutputStream class, for formating
int,long,bool...as String, and printing newline

● Class used in “System.out” static field

Data Input/Output Stream
● Class for serializing int,long,double,String ... as

bytes to underlying Input/Output Stream
(NOTE: interface = Data Input/Output)

● for reading/writing compressed data manually

Object Input/Output Stream

● Magic Serialization using Java Reflection

● Used to save objects to file / to RMI sockets...

● Object =(serialize)=> bytes =(deserialize)=> Object

Implements java.io.Serializable

● Serializable is an EMPTY interface
… used as a marker
to check if object are to be serialized

● Read is checking compatibility signatures...
cf serialVersionID (HASH for fields + methods !!)

Sample Object Input/Output Stream

New package java.nio.*

● NOT Complex enough ??? Don't Worry

● You can have InputChannel / OutputChannel
and Buffer (ByteBuffer, DirectBuffer, HeapBuffer...)

Same as InputStream / OutputSteam
but data copy per buffer blocks (<=4096...),
not per bytes

… for optimizing asynchronous DMA ios
(less CPU consuption, better hardware Drivers resources)

Conclusion …. Beautiful java.* packages...
MUST BE KNOWN

Questions ?

arnaud.nauwynck@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

