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Outline

● Java.lang.*
● Object, Class, String

● Java.util.*
● List (ArrayList ), Object equals()
● Hash algorithm, HashMap/Set, hashCode()
● R-B Tree algoritm, TreeMap/Set, compareTo()

● Java.io.*
● Output/Input Stream
● PrintStream / StreamReader
● DataOutput / Input,  Object Input/Output Stream



  

MAY – SHOULD - MUST KNOW

● A java developer MUST KNOW BY HEART
90% of java.lang/util/io.* package...

● Java.lang.String and java.util.ArrayList 
 = the 2 most widely used classes

● Anyway a “person” who doesn't know this is 
NOT CONSIDERED a Java Developper

● eliminatory questions in jobs recruitement



  

java.lang.Object

● All Objects are extending “java.lang.Object”
● An Object has 1 (immutable) Class (=Type)
● Java.lang.String are immutable

Java.lang.Object

String

JDK classes :  
 java.*, javax.*, com.sun.* 

Java.lang.Class

User-Defined classes
fr.*, org.*, com.*
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Class, ClassLoader, Method/Field 
Introspection

● Class is both
● INTERNAL for type-checking

ensure integrity and security of the JVM
● PUBLIC for introspection / reflection

● Classes are loaded per ClassLoader 
● A Class is loaded at most 1 per classLoader
● Possibility to have several isolated ClassLoaders
● => osgi / plugins / application servers architectures

● More in Introspection presentation



  

Java.lang.String

● String are immutable
● Concatenate '+', Replace … => new String
● Dot not compare with “==” … use “.equals()”  !!!!



  

StringBuilder

● Use StringBuilder for writable/temporary buffer
● Basically, a wrapper for “char[]”
● Edit, delete, chars...

● Performance:
● … usefull for list iteration + concatenation
● Javac compiler already generate StringBuilder code

    => … useless for static “a” + “b” + 12 + …
● StringBuffer is deprecated (synchronized)



  

StringBuilder



  

Java.util.  Interfaces/Classes 

● Java.util.* package contains both
● Interface  

example: List
● Simple implementations

example ArrayList, LinkedList
● Wrappers

– Example: Collections.unmodifiableList(),
Arrays.asList(), Collections.synchronizedList()

● See also 
● apache commons-collections, google guavac  ...



  

Interfaces: 
Iterable,Collection,List,Set,Map 

● Iterable<E>   {  public Iterator<T> iterator(); }

● Collection<E>
● a mathematical bag, with no special order or property
● add()/remove()/contains() for elements

also clear()/addAll()/removeAll()/retainAll() …
size()/isEmpty()/toArray() 

● List<E>   collection + index supports

● Set<E>  collection + unicity

● Map<Key,E>   unicity by key … =Set<Entry<K,V>>

● SortedSet, SortedMap



  

Interfaces

Iterable

Collection

List Set Map

SortedMapSortedSet
Note there is no SortedList in jdk !!!
=> cf google gavac for efficient ones



  

Java.util.ArrayList
Abstract classes and Interfaces



  

Sample ArrayList Code



  

Object Identity : equals()

● List / Collection only needs “equals()”
for remove(),contains()...

● Equals is not “==”
● Compare equality by VALUE 

.. not only by POINTER
● Equals must be reflexive, symmetric, transitive...
● == By default when not overridden (NOT RECOMMEDED)

● Equals may choose a subset of fields to compare
● Example : “id”  only 



  

Sample Equals



  

Typical List.remove() / indexOf() 
scan algorithms in o(N)

Special case for 
“null.equals(elt)”
Return on first null

Linear iter
test equals() with elts
Return on first found



  

Theory => TP

1) Create a new java project in eclipse

2) Create a class with 4 id fields (an int, a double, 
a String and a bool), and other dummy fields

3) Implements the correct equals(), hashCode(), 
compareTo() for this class

4) Write a Junit test for playing with list 
add(),remove(),contains(), addAll()...



  

HASH table algorithms

● Doing search in O(N) is very inefficient
● Hash-Table offer an O(1) algorithm

with memory consuption P
● Choose P as prime number
● with P >> N    for avoiding conflicts

● to search an elt, compute its hash
=> search first in entry index  “hash modulo P”
check candidate with equals(), 
otherwise (conflict), check in next entry



  

Object.hashCode()

● HashCode() compute a HASH for an Object
● When Object are equals =then=> hashCode equals
● Reciprocity is false

● when not overriden  (NOT RECOMMENDED),
default hashCode() is the memory adress of the 
object …
● The first time it was requested and stored !!! 

(gc can move objects)
● Modulo 32bits for 64bits pointers



  

Sample hashCode()



  

Note on Hash Keys Immutability

● HashMap should contains readonly Keys!!
class MyKey {   private final String key1; …. }
.. in doubt, do not modify objects after enlisted in 
maps!!!



  

Sample HashMap Code
HashTable is deprecated (synchronized), use HashMap



  

HashSet

● Same as HashMap … key is also the value
● See internal implementation in jdk:



  

Sample HashSet Code



  

Red-Black Tree Algorithm

● well distributed Tree : 
              N elements => depth log(N)

● On each node
● A node contains a value … to compare with others
● A node has 2 child left - right
● All elements in left Tree are compared <= node 
● All elements in left Tree are compared > node

● Performance:
● Operations in O(Log(N)) : add(), remove(), contains()...
● Tree is ordered => Scan in sorted order... unlike hash



  

Sample compareTo() method



  

Sample TreeMap code

● Same sample as HashMap …
only change new HashMap() by new TreeMap()

● Specific samples for sorted key collections



  

Sample TreeSet

● Same sample as HashSet …
● Specific code for sorting collections



  

Theory => TP

1) Recursive Scan in a directory file

2) Filter out meaningless (hidden) files and sub-
dirs starting with “.” name (.svn/*, .git, ...)

3) Count the number of files having the same 
name:
Maintain a “Map<String,List<File>>” 
occurences.
At the end, print the list of duplicates (count > 1) 
files names, with the list of corresponding 
occurences



  

Input/Output Stream Classes
● Stream is a way to handle bytes, one after one

● Input => for reading byte(s)
● Output => for writing byte(s)



  

Java.io. Input/Output Stream

● Stream are abstract classes .. see sub-classes
● FileInputStream (resp Ouput)

= based on an underlying java.io.File
● BufferedInputStream (resp Ouput)

= based on another Stream, plus a buffer
● ByteArrayInputStream (resp Output)

= based on an in-memory array
● SocketInputStream (resp Ouput)

= based on a Socket
● StringBufferInputStream … deprecated!!



  

Sample ByteArrayInputStream



  

Typical code with try-finally close 
and IOException



  

Sample Code: InputStream => 
SHA1 digest (as in git hash-object)



  

Sample Copy Input->Output Code 



  

Same with Jakarta commons-io !!



  

Theory => TP

● Similar to previous exercise:

Implements the search duplicate file by content
instead of duplicate by filename
● Use MessageDigest to compute SHA1 hashcode
● Maintain a Map<SHA1,List<File>> 
● Print duplicates file contents



  

Reader/Writer abstract classes
● Reader/Writer is a way to handle chars (not bytes), one after one

● Reader => for reading char(s)
● Writer  => for writing char(s)



  

CharSet encoding/decoding

● Byte to char conversion is called CharSet 
Encoding/Decoding

● Char can be 1,2,3 or 4 bytes long in UTF-8
● standards ASCI chars are 1 byte ONLY !!  

(0 followed by 7 bits)
● Other standard Encoding:  ISO-8859-1=Latin1, 

Cp1253=Windows



  

UTF-8  /  ISO-8859-1 nightmare
… English Javadoc 

EXACTELY SAME file, viewed as ISO-8859-1 file

file(s), viewed as UTF-8 file

Line written in ISO-8859-1

Line written in UTF-8



  

InputStreamReader Sample Code

● understand class behavior 
by reading camel-case classname from right to left ...

Input Stream Reader =
    a Reader sub-class adapter
    based on InputStream



  

Sample BufferedReader Code

● Perfect class for reading line per line



  

PrintStream class

● Extension of OutputStream class, for formating 
int,long,bool...as String, and printing newline

● Class used in “System.out” static field



  

Data Input/Output Stream
● Class for serializing int,long,double,String ... as 

bytes to underlying Input/Output Stream
(NOTE: interface = Data Input/Output )

● for reading/writing compressed data manually



  

Object Input/Output Stream

● Magic Serialization using Java Reflection

● Used to save objects to file / to RMI sockets...

● Object =(serialize)=> bytes  =(deserialize)=> Object



  

Implements java.io.Serializable

● Serializable is an EMPTY interface 
… used as a marker 
to check if object are to be serialized

● Read is checking compatibility signatures...
cf serialVersionID  (HASH for fields + methods !!)



  

Sample Object Input/Output Stream



  

New package java.nio.*

● NOT Complex enough ???  Don't Worry

● You can have InputChannel / OutputChannel
and Buffer (ByteBuffer, DirectBuffer, HeapBuffer...)

Same as InputStream / OutputSteam
but data copy per buffer blocks (<=4096...), 
not per bytes

… for optimizing asynchronous DMA ios
(less CPU consuption, better hardware Drivers resources)



  

Conclusion  …. Beautiful java.* packages...
MUST BE KNOWN

Questions ? 

arnaud.nauwynck@gmail.com
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